SLE scaling limits for a Laplacian random growth model

نویسندگان

چکیده

On considère un modèle d’agrégation planaire aléatoire selon la famille ALE(0,η), telle que les particules se rattachent préférentiellement à des régions de petites mesures harmoniques. montre le exhibe une transition phases pour η négatifs, où valeurs suffisamment grandes, loi du rattachement chaque particule devient atomique dans limite particules, et est rattachée deux points base précédente. Ceci complète résultat Sola, Turner Viklund grands positifs, concentre en l’atome unique l’extrémité Comme conséquence cette condensation rattachement, nous déduisons quand taille tend vers zéro, l’amas ALE converge évolution Schramm–Loewner paramètre κ=4 (SLE4). Nous conjecturons aussi qu’en utilisant d’autres formes appartenant certaine famille, obtiendrons similaire renormalisation SLEκ tout κ≥4.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Laplacian Growth, Sandpiles and Scaling Limits

Laplacian growth is the study of interfaces that move in proportion to harmonic measure. Physically, it arises in fluid flow and electrical problems involving a moving boundary. We survey progress over the last decade on discrete models of (internal) Laplacian growth, including the abelian sandpile, internal DLA, rotor aggregation, and the scaling limits of these models on the lattice Z as the ...

متن کامل

THE SCALING LAW FOR THE DISCRETE KINETIC GROWTH PERCOLATION MODEL

The Scaling Law for the Discrete Kinetic Growth Percolation Model The critical exponent of the total number of finite clusters α is calculated directly without using scaling hypothesis both below and above the percolation threshold pc based on a kinetic growth percolation model in two and three dimensions. Simultaneously, we can calculate other critical exponents β and γ, and show that the scal...

متن کامل

Random matrices and Laplacian growth

The theory of random matrices with eigenvalues distributed in the complex plane and more general “β-ensembles” (logarithmic gases in 2D) is reviewed. The distribution and correlations of the eigenvalues are investigated in the large N limit. It is shown that in this limit the model is mathematically equivalent to a class of diffusion-controlled growth models for viscous flows in the Hele-Shaw c...

متن کامل

Scaling limits of large random trees

The goal of these lectures is to survey some of the recent progress on the description of largescale structure of random trees. We will use the framework of Markov branching sequences of trees and develop several applications, to combinatorial trees, Galton-Watson trees, some dynamical models of randomly growing trees, cut trees, etc. This is a rough draft – to be completed – all comments are w...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Annales de l'I.H.P

سال: 2022

ISSN: ['0246-0203', '1778-7017']

DOI: https://doi.org/10.1214/21-aihp1217